Image segmentation by iterated region merging with localized graph cuts
نویسندگان
چکیده
This paper presents an iterated region merging-based graph cuts algorithm which is a novel extension of the standard graph cuts algorithm. Graph cuts addresses segmentation in an optimization framework and finds a globally optimal solution to a wide class of energy functions. However, the extraction of objects in a complex background often requires a lot of user interaction. The proposed algorithm starts from the user labeled sub-graph and works iteratively to label the surrounding un-segmented regions. In each iteration, only the local neighboring regions to the labeled regions are involved in the optimization so that much interference from the far unknown regions can be significantly reduced. Meanwhile, the data models of the object and background are updated iteratively based on high confident labeled regions. The sub-graph requires less user guidance for segmentation and thus better results can be obtained under the same amount of user interaction. Experiments on benchmark datasets validated that our method yields much better segmentation results than the standard graph cuts and the Grabcut methods in either qualitative or quantitative evaluation.
منابع مشابه
Iterated Graph Cuts for Image Segmentation
Graph cuts based interactive segmentation has become very popular over the last decade. In standard graph cuts, the extraction of foreground object in a complex background often leads to many segmentation errors and the parameter λ in the energy function is hard to select. In this paper, we propose an iterated graph cuts algorithm, which starts from the sub-graph that comprises the user labeled...
متن کاملGraph Cuts Segmentation by Using Local Texture Features of Multiresolution Analysis
This paper proposes an approach to image segmentation using Iterated Graph Cuts based on local texture features of wavelet coefficients. Using Haar Wavelet based Multiresolution Analysis, the lowfrequency range (smoothed image) is used for the n-link and the highfrequency range (local texture features) is used for the t-link along with the color histogram. The proposed method can segment an obj...
متن کاملImage Segmentation Using Iterated Graph Cuts Based on Multi-scale Smoothing
We present a novel approach to image segmentation using iterated Graph Cuts based on multi-scale smoothing. We compute the prior probability obtained by the likelihood from a color histogram and a distance transform using the segmentation results from graph cuts in the previous process, and set the probability as the t-link of the graph for the next process. The proposed method can segment the ...
متن کاملImage Segmentation using Effective Region Merging Strategy
A watershed-based image segmentation using effective region merging strategy. The proposed algorithm is a hybrid segmentation technique. Firstly, a filter is implemented to detect the boundary of the objects in the input gray-scale image and we mark the minimum gray value of pixels before adopting watershed transformation. Each region is labeled by a unique number after the transform. Then each...
متن کاملRegion Merging Via Graph-Cuts
In this paper, we discuss the use of graph-cuts to merge the regions of the watershed transform optimally. Watershed is a simple, intuitive and efficient way of segmenting an image. Unfortunately it presents a few limitations such as over-segmentation and poor detection of low boundaries. Our segmentation process merges regions of the watershed over-segmentation by minimizing a specific criteri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 44 شماره
صفحات -
تاریخ انتشار 2011